
Extending BPELlight for Expressing Multi-Partner Message Exchange Patterns

Jörg Nitzsche, Tammo van Lessen, and Frank Leymann
Institute of Architecture of Application Systems, University of Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany
{joerg.nitzsche | tammo.van.lessen | frank.leymann}@iaas.uni-stuttgart.de

http://www.iaas.uni-stuttgart.de/

Abstract

Message exchange patterns provide means to define
the message flow of a service and how these messages
are related in an abstract and reusable manner. They
are an integral part of WSDL 2.0 and allow defining op-
erations that have a message exchange beyond request-
response. They reduce the impedance mismatch between
imperative programming and message orientation while
emphasizing the message orientated nature of Web Ser-
vices. Whereas BPEL defines a flow between Web Ser-
vice operations, BPELlight is an appropriate candidate to
define the flow within operations since it abstracts from
WSDL. In this paper we extended BPELlight to facili-
tate capturing complex multi-lateral message exchanges.
We refine the partner model and relax the definition of
a conversation to enable modelling conversations that
involve different partner types. We also extend the lan-
guage with a first-class construct that enables storing,
querying and thus distinguishing addressing information
related to multiple partner instances. This way we en-
able modelling message exchange patterns that capture
business logic in a reusable manner on an abstract level
like for instance a request for bid scenario or a business
transaction for purchase.

1. Introduction

Service-oriented architecture (SOA) [5] is the latest
trend in integrating heterogeneous systems. It identifies
agnostic, self-contained services that encapsulate high-
level business concepts [13]. These business concepts
often require long-running multi-step (conversational)
interaction between partners. The Web Service tech-
nology (WS-*) [18] is the most prominent approach
to implementing an SOA and has gained broad accep-
tance in industry and academia. Besides SOAP [10],
WSDL 2.0 [7, 8] is the core specification of the WS-*
standard stack. It provides means to express which mes-

sages a service is able to send and receive and their rela-
tion by grouping them into operations. The operations
are typed using a URI that identifies a message exchange
pattern (MEP) which is defined in natural language fol-
lowing a predefined template. However there are several
disadvantages with respect to the W3C1 proposed tem-
plate: First, its expressivity is limited; MEPs involving
several instances of a node for example can only be spec-
ified when the existing schema is extended [16]. Second,
it is not precise enough; it is for instance not speci-
fied how a receiver of an optional message can find out
whether the message will actually arrive or not. Third,
the plain text representation is not machine-readable;
thus Web service framework implementers have to inter-
pret and implement each MEP separately.

The Business Process Execution Language (BPEL)
[1] provides a comprehensive set of primitives to define
a flow between Web Service operations. As it describes
the message exchange from a services point of view
like WSDL and since it has mind-share it is an eligible
candidate for formalizing MEPs. In [17] BPELlight, a
BPEL dialect that abstracts from interface definitions,
is used to specify the flow within operations. However,
the presented MEPs are restricted to bi-lateral message
exchanges and do not take multi-party interactions into
account.

In this paper we extended this approach of defin-
ing MEPs to facilitate capturing complex multi-lateral
message exchanges. We refine the partner model of
BPELlight and relax the definition of a conversation to
enable modelling conversations that involve different
partner types such as the requester’s point of view of a
Request-with-Referral [3, Pattern 11]. We also extend
the language with a first-class construct that enables
storing, querying and thus distinguishing addressing in-
formation related to multiple partner instances and thus
allows for modelling e.g. the inititiators point of view of
a Request-for-Bid [3, Pattern 7].

1http://w3.org

The remainder of the paper is structured as follows.
WSDL and the MEPs in particular are presented in sec-
tion 2. Section 3 gives an introduction into BPEL and
BPELlight. In section 4 it is shown how BPELlight can
be used to specify MEPs. The need for complex multi-
partner MEPs is motivated in section 5. Extensions to
BPELlight that facilitate expressing multi-partner MEPs
are presented in the following two sections: Section 6
deals with MEPs that involve multiple partner types and
section 7 with multiple instances of a partner type. Sec-
tion 8 concludes the paper and gives directions for future
work.

2. WSDL Operation Types / Message Ex-
change Patterns

The Web Service Description Language is used in
a Web Service world to describe a service in terms of
messages the service is able to send and receive. It en-
ables describing the messages themselves, how they are
related, their binding to a transport protocol and the end-
point (port) where the service is waiting for incoming
messages. The relation of messages is defined by group-
ing them into operations. Operations are in turn grouped
into so called portTypes.

WSDL 1.1 provides a fixed set of four operation
types:

1. request-response – the service first receives a re-
quest and then sends a response or a fault,

2. one-way – the service only receives a message

3. solicit-response – the service sends a request and
receives a response or a fault

4. notification – the service sends a message.

The operation types correspond to the basic sce-
narios in enterprise application integration (EAI) [12]

� �
This pattern consists of [number] message[s, in order] as follows:

[enumeration, specifying, for each message]
A[n optional] message:

1. indicated by an Interface Message Reference component whose
message label is "[label]" and direction is "[direction]"

2. [received from|sent to] ["some" if first mention] node
[node identifier]

This pattern uses the rule [fault ruleset reference].

An Interface Operation using this message exchange pattern has a
message exchange pattern property with the value "[pattern IRI]".� �

Listing 1. WSDL 2.0 MEP template [6]

which are: (i) receiving a message triggers a response
message (WSDL operation type request-response from
the perspective of the service and the dual operation
solicit-response from a requester’s point of view) and
(ii) receiving a message does not trigger a response
(WSDL operation type one-way from the perspective
of the service and the dual operation notification from a
requester’s point of view). However, as the WSDL spec-
ification is terse, the operation types solicit-response and
notification were interpreted differently by some vendors.
Notification for instance was implemented point-to-point
by one group of vendors and one-to-many by another
group of vendors. Therefore, the Basic Profile [2] of
the Web Services-Interoperability (WS-I) Organization2

defines that these operation types must not be used in
order to achieve interoperability. Consequently, only two
operation types from WSDL 1.1 are used in practice, one
where a message is received only and another where re-
ceiving a message triggers a response. As a consequence,
in general it is not possible to describe the messages a
service is able to send and receive only using the WSDL
description of the service. Instead also WSDL descrip-
tions of partner services have to be referred to like it
is done in the WSDL extension partner link type. The
result is a tighter coupling which contradicts the SOA
paradigm of loose coupling.

To enable describing operations more precisely,
WSDL 2.0, which became a W3C recommendation in
2007, introduces an extensible mechanism to identify
operation types by means of message exchange patterns
(MEP). This way all required types of operations can be
defined, for instance one for sending a message point-
to-point and one for one-to-many. A MEP defines the
operation type of a WSDL operation by following a pre-
defined template (see Listing 1) to describe the order in
which messages that belong to the same operation are
exchanged. In the template, the bracketed items indi-
cate a replacement operation. The received from and
sent to are always from the point of view of the service,
and participating nodes other than the service are im-
plicitly identified as the originators of or destinations
for messages in the exchange. A MEP in an operation
is identified via the attribute pattern (see Listing 2). In
contrast to WSDL 1.1, an operation can have multiple
inputs, multiple outputs, multiple incoming faults and
multiple outgoing faults that define the data types and
faults used during the message exchange. In principle
an MEP can define an arbitrary message exchange of a
service with (a) partner service(s).

2http://www.ws-i.org/

Eight MEPs are defined by official W3C documents
[6, 7, 14]:

1. In-Only – The service receives a message.

2. Robust In-Only – The service receives a message
and in case of a fault it returns a fault message

3. In-Out – The service receives a message and returns
either a response message or a fault message

4. In-Optional-Out – The service receives a message
and optionally returns a response message or a fault
message

5. Out-Only – The service sends a message

6. Robust-Out-Only – The service sends a message
and in case of a fault at the partner service it re-
ceives a fault message

7. Out-In – The service sends a message and receives
either a response message or in case of a fault at the
partner service it receives a fault message

8. Out-Optional-In – The service sends a message and
optionally receives either a response message or in
case of a fault at the partner service it receives a
fault message

All of these patterns listed above describe a bi-
lateral message exchange between the service and a part-
ner service. The descriptions of the patterns identify the
partner service using a node identifier (see Listing 1).
This way the ambiguity of WSDL 1.1 operation types is
resolved. The MEP out-only for instance defines a point-
to-point interaction and thus provides the specification
for exactly one of the interpretations of the operation
type notification.

However, the template for describing MEPs pro-
posed by the W3C is not precise enough to actually
define a contract between the service and its partner ser-
vice(s): patterns with optional receiving messages for
instance are underspecified because it is not defined how
services that implement the MEP should behave. They
could for instance wait for a certain period until the mes-
sage or the fault arrives. However, the exact behavior is
not specified.

3. BPEL and BPELlight

In the field of executable business processes the
Business Process Execution Language (WS-BPEL or
BPEL) is the de facto standard for modelling Web ser-
vice compositions and has gained board acceptance in
industry and research. BPEL is tightly coupled with

� �
<operation name="xs:NCName"

pattern="xs:anyURI"?
style="list of xs:anyURI"? >

<documentation />*
[<input/>|<output/>|<infault/>|<outfault/>]*

</operation>� �
Listing 2. Definition schema for WSDL 2.0
operations

WSDL 1.1 [8] as its communication model is based on
WSDL’s concept of portTypes and operations.

To enable communication that is compliant to the
Basic Profile [2] of the WS-Interoperability Organiza-
tion, i.e. without using WSDL operations of type noti-
fication and solicit-response, BPEL introduces the con-
cept of a partner link type which is defined as an exten-
sion to WSDL. A partner link type defines two roles in
terms of port types and binds them together. The opera-
tions of type notification and solicit-response of a role
are expressed as operations of type one-way and request-
response, the other role has to provide. This definition
of an abstract communication channel is used inside a
BPEL process by a so called partner link. A partner link
references a partner link type and defines which role is
taken by the partner service and which role is taken by
the process itself. Thus, it defines a concrete contract
between a process and a partner service in terms of the
operations each side has to provide.

According to the different operation types of WSDL
provided by the two roles of the partner link type,
BPEL defines several basic interaction activities. The
<receive> activity implements either a one-way op-
eration or, in conjunction with a <reply> activity, a
request-response operation. The more complex <pick>
activity may implement potentially multiple one-way
operations or in combination with the <reply> ac-
tivity multiple request-response operations (each in-
coming message represented by an <onMessage>-
element). A <pick> activity may also specify a timer
to define timing constraints like timeouts, e.g. to ex-
press how long the activity should wait for incoming
messages. Like <pick> and <receive> activities,
<eventHandler>s also implement one-way opera-
tions or, in combination with a corresponding <reply>
activity, request-response operations. They facilitate re-
ceiving messages at any time as long as the scope they
are defined for is active. The <invoke> activity is
capable of invoking other Web Services by using opera-
tions of type one-way and request-response these partner
services provide.

The composition of Web Services can be speci-
fied as a flow between BPEL’s interaction activities,
and thus as a flow between WSDL operations. For
the definition of such flows, BPEL provides several
so called structured activities that help modelling the
control flow between interaction activities that are de-
scribed in terms of Web Service operations. The con-
trol flow between activities can either be structured
in a block-based manner by nesting structured activ-
ities like <sequence> (for sequential control flow),
<flow> (for parallel control flow), <if> (for condi-
tional branches in the control flow) and <while> (for
loops) activities, or graph-based by defining conditional
or unconditional <links> (i.e. directed edges) between
activities within a <flow> activity; both styles can be
used intermixed. Data flow is implicitly defined via
globally shared variables. Data can be copied from one
variable to another using the <assign> activity.

BPEL uses WSDL operations and port types to de-
fine activity implementations. However, the actual ac-
cess and adressing information which is defined in the
WSDL port is not included in the BPEL process model.
This information has to be provided either during de-
ployment of the process model or even during runtime
of a particular process instance. In the former case both,
the endpoint reference (EPR) of the process itself as
well as the EPRs of the partner services are specified
via so called deployment descriptors. In the latter case,
incoming messages initialize the partner role of a partner
link which is then associated with the EPR of the part-
ner service that has sent the message. During runtime,
EPRs are stored in the partner link by means of a service
reference container (service-ref) and can be both
read and written by <assign> activities. This way it is
possible to iterate over a set of EPRs and invoke different
instances of a certain partner.

In [15] BPELlight has been presented. It is an exten-
sion of BPEL 2.0 and removes BPEL’s inherent depen-
dency on WSDL. This enables describing both, the flow
between and within Web Service operations. Therefore
BPELlight is obviously an eligible candidate for specify-
ing MEPs in a machine-understandable fashion.

For the sake of the independence of any interface
definition language, BPELlight introduces a new WSDL-
less interaction model using BPEL 2.0’s extension activ-
ity mechanism. Therefore it defines the following new
constructs:

• the <interactionActivity>, that replaces
all basic interaction activities (<receive>,
<reply> and <invoke>),

• a WSDL-less <pick> activity,

• a WSDL-less <eventHandler>, and

• a <conversation> element that enables group-
ing several of the afore-mentioned interaction activ-
ities.

Employing these concepts in combination with
BPEL’s control flow primitives facilitates modelling
complex interaction with partner services independent
of WSDL.

4. Using BPELlight for defining WSDL 2.0
MEPs

The expressivity of the natural-language based tem-
plate for defining MEPs is limited to sequential ordering
of messages and the template is not machine-readable.
In [17] an approach is presented that eliminates these
drawbacks by using BPELlight to define MEPs.

In contrast to process models, MEPs do not define
data types and are generically defined as they are aimed
to be reusable [16]. This requires from BPELlight the
possibility to define abstract process models to enable
defining only a flow of abstract messages which need
to be concretely bound to specific message types when
they are used to define a WSDL operation. Hence, a
new Abstract Process Profile for Message Exchange
Patterns was defined. It restricts the common base in the
following manner3 [17]:

• Omission shortcuts (i.e. omitted elements) MUST
NOT be used in the MEP profile with one excep-
tion: Timing definitions, i.e. <for>, <until>,
and <repeatEvery>, MAY be omitted in
<onAlarm> and <wait> elements. In this case,
deadlines and durations MUST be defined by a
newly introduced timing expression element (see
Listing 3). The type repeatEvery is only appli-
cable to <onAlarm> elements. This new element
is necessary to have the possibility to express tim-
ing constraints without pinpointing whether they
are durations, deadlines or repetitions.

3The upper case keywords "MUST", "MUST NOT", "RE-
QUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this docu-
ment are to be interpreted as described in [4]

� �
<mep:timingExpression

expressionLanguage="anyURI"?
type="for|until|repeatEvery"
expression="expr"/>� �

Listing 3. MEP extension: timing expression

• Explicit opaque tokens, i.e. opaque activity, opaque
attributes, opaque expression, and opaque from-
spec, MUST NOT occur in MEP models except
for variable references, types and time constraints.
These opaque tokens denote the points of variability
which have to be substituted later in order to come
to a concrete meaningful form of this MEP process
model.

• To define generic MEPs data types MUST NOT
be directly referenced by variables in MEP mod-
els. Instead, an opaque placeholder can be em-
bedded which is to be replaced later. If mes-
sage passing within the MEP process is not essen-
tial, inputVariable or outputVariable
respectively can be marked opaque, the type is then
automatically derived from the referencing WSDL
messages. That way variable declarations can be
omitted.

• Faults MUST be explicitly unmasked using
BPELlight’s faultName attribute in receiving
activities (i.e. bl:interactionActivity,
bl:onMessage within a bl:pick)

Using BPELlight’s abstract profile for MEPs, an
MEP can be defined as follows: Each MEP requires
a seperate <process> definition. Within this defini-
tion an arbitrary flow between BPELlight’s interaction
activities (bl:interactionActivity, bl:pick
and bl:eventHandler) can be defined using BPELs
control flow primitives. Additionally a single conversa-
tion is defined to group these activities to an MEP.

Such a BPELlight MEP can be used in WSDL 2.0 in
the following manner. Referencing an MEP formalised
in BPELlight is analogue to referencing WSDL 2.0’s tex-
tual MEPs. In BPEL the tuple (targetNamespace,
name) serves as unique identifier of a process model
which can be transformed to an IRI by concatenat-
ing the target namespace and the process name as
an IRI with a fragment identifier. For instance the
the IRI http://.../mep-in-bpel#in-out ref-
erences the tuple (http://.../mep-in-bpel,
in-out). This IRI is used to identify the pattern by
means of the pattern attribute in an operation.

To map input and infault, output and outfault mes-
sages to interaction activities in the MEP process model,
the messageLabel attribute points to a receiving or
sending activity respectively which holds the same mes-
sage label in its name attribute.

For configuring timing expressions like for instance
timeouts an extension element has been introduced
which is to be placed next to message references in the
<operation> element. To be as generic as possible,

Service

Node M

Node N

Figure 1. Scenario “Request-with-Referral”.

� �
This pattern consists of exactly two messages, in order, as follows:

A message:
− indicated by a Interface Message Reference component

whose {message label} is "Out" and {direction} is "out"
− sent to some node N

A message:
− indicated by a Interface Message Reference component

whose {message label} is "In" and {direction} is "in"
− received from some node M where M <> N

This pattern uses the rule 2.2.1 Fault Replaces Message. An
operation using this MEP has a {MEP} property with the value
"http://www.iaas.uni−stuttgart.de/2007/10/wsdl/rwr".� �

Listing 4. MEP “Request-with-Referral”

the new element <mep:configure> allows replacing
opaque values of both attributes and elements by simply
using XPath [9] to identify the appropriate node in the
MEP model.

5. Multi-partner/Instance MEPs

The MEPs that are presented in the scope of the
WSDL 2.0 specification and that have been formalized
using BPELlight in [17] only cover bi-lateral message
exchanges between a service and another node. However,
high level business concepts that are encapsulated by
services often require conversational interaction with
several partner nodes, i.e. these services take part in a
complex choreography.

Modelling multi-partner MEPs is possible using the
template because it enables identifying partner nodes
explicitly. However, it is not defined what it means when
several different partner nodes are involved in a message
exchange. These nodes could be several implementa-
tions of the same type of service, i.e. different instances

c

Service

Node Set N

N(1)
N(i)N(2)

Figure 2. Scenario “Request-for-Bid”.

� �
This pattern consists of multiple messages, in order, as follows:

For each node i of a set of nodes N

A message:
− indicated by a Interface Message Reference component

whose {message label} is "Out" and {direction} is "out"
− sent to node N(i)

An optional message:
− indicated by a Interface Message Reference component

whose {message label} is "In" and {direction} is "in"
− received from node N(i)

This pattern uses the rule 2.2.1 Fault Replaces Message. An
operation using this MEP has a {MEP} property with the value
"http://www.iaas.uni−stuttgart.de/2007/10/wsdl/rfb".� �

Listing 5. MEP “Request-for-Bid”

of the same node type or they could be nodes of different
types. In [16] extensions to the textual MEP template
were introduced to provide an unambiguous interpreta-
tion.

Request-with-Referral [3] which is presented in fig-
ure 1 is a scenario that involves different node types. In
this scenario a requester sends a request to a provider
which delegates the request to another provider. The re-
quester then receives the result from a provider that is dif-
ferent from the one the request was sent to. Listing 4 pro-
vides the template based description of the MEP Request-
with-Referral that describes the requester’s point of view.
It can be observed, that the MEP does not describe the
whole Request-with-Referral scenario, but only those
messages received or sent by the requester. It remains
undefined how the two different nodes (N and M) com-
municate with each other.

An example for a scenario that involves different
instances of the same node type is a Request-for-Bid that
is composed of a one-to-many-send [3, Pattern 5] and a
one-from-many-receive [3, Pattern 6], which is presented
in Figure 2. The template based description of the MEP
that describes the scenario from the requester’s point of
view is presented in Listing 5. It can be observed that for
enabling distinguishing between different instances of a
node type the template has been extended. In particular,
the notion of a set of nodes (indicating that all nodes

within this set are of the same type), an index to identify
a node within the set of nodes, and a for each statement
to enable iterating the set were introduced.

6. Multipartner MEPs in BPELlight

In [15] a <conversation> has been defined as a
bi-lateral message exchange between the process defined
in BPELlight and a partner service. Multiple conversa-
tions can then be grouped using a <partner> element
to express that multiple conversations have to take place
with exactly one partner. In section 4 it has been shown
how BPELlight and in particular the <conversation>
can be used to model bi-lateral MEPs. To enable express-
ing MEPs that involve multiple partner types, the notion
of a partner has to be relaxed to be more fine granu-
lar. Instead of grouping whole conversations, single
<interactionActivity>s, i.e. messages, can be
assigned a partner using the partner attribute. Note
that partner definitions are mutually exclusive.

Listing 6 shows how the Request-with-Referral pat-
tern can be expressed using the BPELlight abstract profile
for MEPs. The MEP process distinguishes two partner
nodes, the contacted provider (N) and the responding
provider (M). Both partners are referenced in the cor-
responding interaction activities. This way the referral
behavior is reflected.

7. Multi-instances MEPs in BPELlight

When a multi-lateral message exchange interacts
with multiple instances of a partner type like for instance
in a request-for-bid scenario, the actual endpoint refer-
ences (EPRs) of these instances need to be accessible
in a convenient manner in the MEP definition. There-
fore the data stored behind the <partner> element
is extended to additionally store EPR information, i.e.
a partner is not only grouping messages that are to be
exchanged with a certain partner but is also maintaining
references to actual partner instances. In fact, the partner
element keeps both the EPR it is currently associated
with and a set of EPRs belonging to partners it may in-
teract with in future or has been interacted with already.
This information can be used in XPath expressions for
browsing, selecting and iterating EPRs and EPR sets.

Three usage scenarios can be distinguished that can
be used intermixed:

• Single Instance – A partner is associated with ex-
actly one EPR. This EPR is explicitly assigned to a
partner using a deployment descriptor.

• Multi Instance (static) – A partner is associated
with exactly one EPR, singled out of a set of EPRs.

� �
<bpel:process

xmlns:bpel="http://.../wsbpel/2.0/process/
abstract"

xmlns:bl="http://.../bpel-light"
suppressJoinFailure="yes"
abstractProcessProfile="http://.../bpel-light/

abstract/mep/2008/"
targetNamespace="http://../mep-in-bpel"
name="request-wih-referral">
<bl:conversations>

<bl:conversation
name="request-wih-referral"/>

</bl:conversations>
<bl:partners>

<bl:partner name="contacted-provider"/>
<bl:partner name="responding-provider"/>

</bl:partners>
<bpel:flow>

<bpel:links>
<bpel:link name="L1"/>

</bpel:links>
<bl:interactionActivity

name="Out"
inputVariable="##opaque"
partner="contacted-provider"
conversation="request-with-referral">
<bpel:sources>

<bpel:source linkName="L1"/>
</bpel:sources>

</bl:interactionActivity>
<bl:pick>

<bpel:targets>
<bpel:target linkName="L1"/>

</bpel:targets>
<bl:onMessage

name="In"
outputVariable="##opaque"
partner="responding-provider"
conversation="request-with-referral">
<bpel:empty/>

</bl:onMessage>
<bl:onMessage

name="InFault"
faultName="##opaque"
outputVariable="##opaque"
partner="responding-provider"
conversation="request-with-referral">
<bpel:empty/>

</bl:onMessage>
</bl:pick>

</bpel:flow>
</bpel:process>� �
Listing 6. “Request-with-Referral” MEP in
abstract BPELlight

This set is statically configured by a deployment
descriptor.

• Multi Instance (dynamic) – A partner is associ-
ated with exactly one EPR, singled out of a dynamic
set of EPRs. This set is populated during runtime ei-
ther manually, by service discovery mechanisms or
by incoming messages from different yet unknown
partner instances.

The latter requires that the EPR of the partner in-
stance is part of the incoming message, e.g. via WS-
Addressing [11] headers. An example for this scenario
is an auction-style interaction where an unknown set
of bidders (i.e. partner instances of a particular partner
type) can send in quotes. The EPR of each participant is
stored in the EPR set within the <partner> element.

In case of multi-instance scenarios, MEP definitions
mostly need access to the EPR set to address partners
directly. In the auction scenario for instance the partici-
pant with the highest bid shall be notified, therefore the
bid needs to be linked with the partner instance (i.e. its
EPR). When the notification is to be sent, the EPR asso-
ciated with the highest bid is copied to the <partner>
element, i.e. the partner is now pointing to the highest
bidder. A subsequently sent notification will be routed
to the winner’s endpoint.

The EPR information stored within the partner can
be accessed in the same manner as variables can be
used in BPEL. Partner elements hold an XML infoset
exemplarily shown in figure 3 (left) and are accessi-
ble using the $-notation in XPath expressions. The
<current> element contains the EPR currently as-
sociated with the partner while the <list> element
contains a list of known EPRs. Each EPR has been au-
tomatically assigned an id that allows identifying and
iterating EPRs using XPath. The infoset for express-
ing EPRs (sref:service-ref) has been adopted
from the WS-BPEL 2.0 specification and allows the
specification of EPRs independently of any addressing
mechanisms [1, Section 6.3].

To associate a partner with a particular EPR, a BPEL
<assign> can be used to copy an EPR from the EPR
set to the partner EPR as shown in figure 3 (right).

In Listing 7 the abstract BPELlight specification of
the Request-for-Bid MEP is presented. The partner bid-
der is declared in the preamble of the process. Its EPR
set is populated via a deployment descriptor. Since all
bids should be sent out in parallel, a parallel forEach is
used which executes its children activities concurrently.
The parallel forEach iterates the EPR set defined for the
bidder and sends out a request-for-bid to each endpoint
adress. However, using the current EPR of bidder would
result in an undeterministic behavior because each par-

<partnerInstances
xmlns:sref="http://.../wsbpel/2.0/serviceref"
xmlns:wsa="http://.../addressing">
<current>
<sref:service-ref id="2">
<wsa:EndpointReference>

<wsa:Address>http://.../bol/</wsa:Address>
<wsa:ServiceName>bol:BolService</wsa:ServiceName>

</wsa:EndpointReference>
</sref:service-ref>

</current>
<list>
<sref:service-ref id="1">
<wsa:EndpointReference>

<wsa:Address>http://.../amazon/</wsa:Address>
<wsa:ServiceName>as:LookupService</wsa:ServiceName>

</wsa:EndpointReference>
</sref:service-ref>
<sref:service-ref id="2">
<wsa:EndpointReference>

<wsa:Address>http://.../bol/</wsa:Address>
<wsa:ServiceName>bol:BolService</wsa:ServiceName>

</wsa:EndpointReference>
</sref:service-ref>
<sref:service-ref id="3">
<wsa:EndpointReference>

<wsa:Address>http://.../b-and-n/</wsa:Address>
<wsa:ServiceName>bn:BookStoreService</wsa:ServiceName>

</wsa:EndpointReference>
</sref:service-ref>

</list>
</partnerInstances>

EPR 1

EPR 2

EPR 3

current
EPR

current list

Partner

<process …>
<bl:partners>
<bl:partner

name=“bidder“/>
</bl:partners>
…
<sequence>
…
<assign>

<copy>
<from>
$bidder/list/service-ref[@id=2]

</from>
<to>
$bidder/current

</to>
</copy>

</assign>
…

</sequence>
…

</process>

Figure 3. Copying partner EPRs

allel execution would override the EPR again and the
MEP would not follow the intended behavior. Thus, a
local copy of the partner declaration is defined (isoB). A
particular partner instance is selected in each iteration,
by copying an entry of the EPR set to the locally defined
isoP. The entry that is copied is identified by the value of
the counter variable. As an alternative to using local
variables, also an isolated scope could be used to deal
with these race conditions.

8. Conclusion

Message exchange patterns provide means to de-
fine the message flow of a service and how these mes-
sages are related in an abstract and reusable manner.
They are an integral part of WSDL 2.0 and are one of
the major improvements compared to its predecessor
WSDL 1.1. They allow defining operations that have a
message exchange beyond request-response and reduce
the impedance mismatch between imperative program-
ming and message orientation while emphasizing the
message orientated nature of Web Services.

BPELlight is an eligible candidate to define the
message flow within operations since it abstracts from
WSDL operations. In this paper we extended BPELlight

to facilitate capturing complex multi-lateral message ex-
changes. The partner model has been refined and allows
to assign a partner to each single message. This is a
significant improvement with respect to the expressivity
of BPELlight since conversations are no longer restricted
to bi-lateral but may involve different partner types. In
addition, BPELlight has been enriched with a first-class
construct that enables storing, querying and thus distin-
guishing multiple partner instances. Thus, the extensions
made enable expressing multi-lateral message exchanges
involving both, multiple partner types as well as multiple
partner instances of the same type.

The definition of arbitrary complex MEPs, in partic-
ular multi-lateral MEPs in WSDL 2.0 has high impact
on their binding to transport protocols. While in WSDL
1.1 the set of supported MEPs was fixed, the binding
rules have been static as well. Currently, the same ap-
plies to the WSDL 2.0 standard as only the basic MEPs
In-Only, Robust In-Only and In-Out are part of the stan-
dard. The rest of them are not (yet) standardized and
are therefore not considered in binding specifications.
The definition and discussion of protocol bindings for
complex MEPs is part of our future work. Especially
the binding of multi-partner/multi-instance MEPs is a
challenge as there are manifold options to bind for in-

� �
<bpel:process

xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"
xmlns:bl="http://iaas.uni-stuttgart.de/BPELlight"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
abstractProcessProfile="http://iaas.uni-stuttgart.de/BPELlight/abstract/mep/2008/"
name="request-for-bid"
suppressJoinFailure="yes"
targetNamespace="http://www.iaas.uni-stuttgart.de/mep-in-bpel">
<bpel:variables>

<bpel:variable name="counter" type="xsd:long"/>
</bpel:variables>
<bl:partners>

<bl:partner name="bidder"/>
</bl:partners>
<bl:conversations>

<bl:conversation name="requestForBid"/>
</bl:conversations>

<bpel:forEach counterName="counter" parallel="yes">
<bpel:startCounterValue>1</bpel:startCounterValue>
<bpel:finalCounterValue>count($bidder/list/sref:service-ref)</bpel:finalCounterValue>
<bpel:scope>

<bl:partners>
<bl:partner name="isoB"/>

</bl:partners>
<bpel:sequence>

<bpel:assign>
<bpel:copy>

<bpel:from>$bidder/list/sref:service-ref[$counter]</bpel:from>
<bpel:to>$isoB/current</bpel:to>

</bpel:copy>
</bpel:assign>
<bl:interactionActivity name="sendRequest"

inputVariable="##opaque"
conversation="request-for-bid"
partner="isoB">

</bl:interactionActivity>
<bl:pick>

<bl:onMessage name="receiveBid"
outputVariable="##opaque"
conversation="request-for-bid"
partner="isoB">

<bl:onMessage/>
<bpel:onAlarm>

<mep:timingExpression name="timeout"
type="##opaque"
expression="##opaque"/>

<bpel:empty/>
</bpel:onAlarm>

</bl:pick>
</bpel:sequence>

</bpel:scope>
</bpel:forEach>

</bpel:process>� �
Listing 7. “Request-for-Bid” MEP in abstract BPELlight

stance multicasts to different transports. Another aspect
of our future work is the identification of compatible (i.e.
inverse) MEPs which is not necessarily a binary relation.
Having identified the inverse MEP(s) for each MEP can
ease service discovery and protocol mediation.

Achnowledments

The work published in this article was partially
funded by the SUPER project (http://ip-super.org) under
the EU 6th Framework Programme Information Society
Technologies Objective (contract no. FP6-026850).

References

[1] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, A. Guizar, N. Kartha,
C. K. Liu, R. Khalaf, D. König, M. Marin, V. Mehta,
S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web
Services Business Process Execution Language Version
2.0. Committee specification, OASIS Web Services Busi-
ness Process Execution Language (WSBPEL) TC, Jan-
uary 2007.

[2] K. Ballinger, D. Ehnebuske, C. Ferris, M. Gudgin, C. Liu,
M. Nottingham, and P. Yendluri. Basic Profile Version
1.1. WS-I specification, 8:1–1, 2004.

[3] A. Barros, M. Dumas, and A. ter Hofstede. Service In-
teraction Patterns: Towards a Reference Framework for
Service-based Business Process Interconnection. Tech-
nical Report FIT-TR-2005-02, Faculty of Information
Technology, Queensland University of Technology, Bris-
bane, Australia, March 2005.

[4] S. O. Bradner. Key Words for Use in RFCs to Indicate
Requirement Levels. Internet RFC 2119, March 1997.

[5] S. Burbeck. The Tao of e-Business Services. IBM Cor-
poration, 2000.

[6] R. Chinnici, H. Haas, A. A. Lewis, J.-J. Moreau, D. Or-
chard, and S. Weerawarana. Web Services Description
Language (WSDL) Version 2.0 Part 2: Adjuncts. W3C
Recommendation, 2007.

[7] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weer-
awarana. Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language. W3C Recommenda-
tion, 2007.

[8] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL)
1.1. W3C Note, 2001.

[9] J. Clark and S. J. DeRose. XML Path Language (XPath)
Version 1.0. W3C Recommendation, November 1999.

[10] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
H. F. Nielsen, A. Karmarkar, and Y. Lafon. SOAP Ver-
sion 1.2 Part 1: Messaging Framework. W3C Recommen-
dation, 2007.

[11] M. Gudgin, M. Hadley, and T. Rogers. Web Services
Addressing 1.0 — Core. W3C Recommendation, May
2006.

[12] G. Hohpe and B. Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley Longman, Amsterdam, October 2003.

[13] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA:
Service-Oriented Architecture Best Practices (The Coad
Series). Prentice Hall PTR Upper Saddle River, NJ, USA,
2004.

[14] A. A. Lewis. Web Services Description Language
(WSDL) Version 2.0: Additional MEPs. W3C Note,
2007.

[15] J. Nitzsche, T. van Lessen, D. Karastoyanova, and F. Ley-
mann. BPELlight. In 5th International Conference on
Business Process Management (BPM), September 2007.
Brisbane, Australia.

[16] J. Nitzsche, T. van Lessen, and F. Leymann. WSDL 2.0
Message Exchange Patterns: Limitations and Opportuni-
ties. In 3rd International Conference on Internet and Web
Applications and Services (ICIW), June 2008. Athens,
Greece.

[17] T. van Lessen, J. Nitzsche, and F. Leymann. Formalis-
ing Message Exchange Patterns using BPELlight. In 5th
International Conference on Services Computing (SCC),
To appear, July 2008. Honululu, Hawaii, USA.

[18] S. Weerawarana, F. Curbera, F. Leymann, T. Storey,
and D. Ferguson. Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR
Upper Saddle River, NJ, USA, 2005.

